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Introduction
For an integer n, a set of m distinct nonzero integers with the property that the
product of any two of its distinct elements plus n is a square, is called a
Diophantine m-tuple with the property D(n) or D(n)-m-tuple. The
D(1)-m-tuples (with rational elements) are called simply (rational) Diophantine
m-tuples, and have been studied since the ancient time.
The first example of a rational Diophantine quadruple was the set{

1
16 ,

33
16 ,

17
4 ,

105
16

}
found by Diophantus. Fermat found the first Diophantine quadruple in integers
{1, 3, 8, 120}. Euler proved that there exist infinitely many rational Diophantine
quintuples, in particular he was able to extend the integer Diophantine
quadruple found by Fermat, to the rational quintuple{

1, 3, 8, 120, 777480
8288641

}
.

In 2019, Stoll showed that this extension is unique.
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In 1969, using linear forms in logarithms of algebraic numbers and a reduction
method based on continued fractions, Baker and Davenport proved that if d is a
positive integer such that {1, 3, 8, d} forms a Diophantine quadruple, then d has
to be 120. This result motivated the conjecture that there does not exist a
Diophantine quintuple in integers.

The conjecture has been proved 2019. by He, Togbé and Ziegler.
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On the other hand, it is not known how large can a rational Diophantine tuple
be. In 1999, Gibbs found the first example of rational Diophantine sextuple{

11
192 ,

35
192 ,

155
27 ,

512
27 ,

1235
48 ,

180873
16

}
.

In 2017, Dujella, Kazalicki, Mikić and Szikszai proved that there are infinitely
many rational Diophantine sextuples, while Dujella and Kazalicki (inspired by
the work of Piezas) described another construction of parametric families of
rational Diophantine sextuples. In 2019, Dujella, Kazalicki and P. proved that
there are infinitely many rational Diophantine sextuples such that denominators
of all the elements (in the lowest terms) in the sextuples are perfect squares,
and (2021) we proved that there are infinitely many Diophantine sextuples
containing two regular quadruples and one regular quintuple.

No example of a rational Diophantine septuple is known, but we have many
examples of almost septuples (only one condition is missing).
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Sets with D(n) properties have also been extensively studied. It is easy to show
that there are no integer D(n)-quadruples if n ≡ 2 (mod 4). In 1993, Dujella
showed that if n ̸≡ 2 (mod 4) and n ̸∈ {−4,−3,−1, 3, 5, 8, 12, 20}, then there
is at least one D(n)-quadruple.
In 2021, Bonciocat, Cipu and Mignotte proved that there are no
D(−1)-quadruples (as well as D(−4)-quadruples) thus leaving the existence of
D(n)-quadruples in the remaining six sporadic cases open.
In 2000, Dujella proved that for any rational number q there exist infinitely
many rational D(q)-quadruples, while in 2002. he showed that there are
infinitely many rational D(−1)-quintuples.
For infinitely many square-free numbers q there are infinitely many rational
D(q)-quintuples. Assuming the Parity Conjecture for twists of certain elliptic
curves, in 2012, Dujella and Fuchs showed that the density of q ∈ Q such that
there exist infinitely many rational D(q)-quintuples is at least 1/2. The density
bound is 2021. improved to at least 49171/49335 ≈ 99.5 by Dražić.
In 2021, Dražić and Kazalicki described rational D(n)-quadruples with fixed
product of elements. It is not known if there is a rational Diophantine
D(n)-quintuple for every n, and no example of rational D(n)-sextuple is known
if n is not a perfect square (but we have many examples of almost sextuples).

5/19



Introduction
Search methodology

Results
Open questions

D(1) integer sets
D(1) rational sets
D(n) sets
D(n)-sets for more than one n

In 2001, A. Kihel and O. Kihel asked if there are Diophantine triples {a, b, c}
which are D(n)-triples for several distinct n’s. They conjectured that there are
no Diophantine triples which are also D(n)-triples for some n ̸= 1. However,
Dujella showed 2002, that {8, 21, 55} is a D(1) and D(4321)-triple, while
{1, 8, 120} is a D(1) and D(721)-triple, as observed by Zhang and Grossman
2015.

In 2017, Adžaga, Dujella, Kreso and Tadić presented several families of
Diophantine triples which have D(n)-property for two distinct n’s with n ̸= 1 as
well as some Diophantine triples which are D(n)-sets for three distinct n’s with
n ̸= 1.
In 2018, they found examples of Diophantine triples which have D(n)-property
for three additional n’, as well as the set {6, 48, 120}, which is D(n) set for
n = 36, 1921, 3076, 25956, 110601.

In 2020, Dujella and P. proved that there are infinitely many (essentially
different) integer quadruples which are simultaneously D(n1)-quadruples and
D(n2)-quadruples with n1 ̸= n2, and in the same year that the same thing is
true for three distinct n’s (since the elements of their quadruples are squares,
one of n’s is equal to zero).
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Main result – quintuples
Theorem 1.1

There are infinitely many nonequivalent quintuples that have D(n1) property for
some n1 ∈ N such that all the elements in the quintuple are perfect squares. In
particular, there are infinitely many nonequivalent integer quintuples that are
simultaneously D(n1)-quintuples and D(n2)-quintuples with n1 ̸= n2 since then
we can take n2 = 0.

Note that if {a, b, c, d , e} is a D(n1)-quintuple, and u a nonzero rational, then
{ua, ub, uc , ud , ue} is a D(n1u2)-quintuple and we say that these two quintuples
are equivalent. Since every rational Diophantine quintuple is equivalent to some
D(u2)-quintuple whenever u is an integer divisible by the common denominator
of the elements in the quintuple, we proved that there are infinitely many
rational Diophantine quintuples with the property that the product of any two
of its elements is a perfect square. Details can be found in:
A. Dujella, M. Kazalicki, V. Petričević, D(n)-quintuples with square elements,
Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 115 (2021),
Article 172, (10pp)
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In searching for D-sets with m elements, it is natural first to find some sets with
m − 1 element. So let’s see what a D-pair could be.
We are actually searching for D(1) and D(0) rational sets in which all elements
have the same denominator, and all numerators are squares or D ×�, where D
is squarefree number.
So for some a1, a2 ∈ N to be a pair, for some b ∈ N, then it has to hold
Da2

1
b · Da2

2
b + 1 = c2, for some c ∈ Q. Or in the other words, it has to hold

(Da1 · a2)
2 + b2 = c2, for c ∈ N.

Therefore for a fixed b, we calculated all Pythagorean triangles with one leg b.
And then D · a1 · a2 is the other leg. Well known formulas for Pythagorean
triples are

b = 2dkl and Da1a2 = d(k + l)(k − l),
for some k, l , d ∈ N, and opposite. (k, l are coprime and one of them is even.)
So we just had to find all divisors of the other leg.
For example, from the Pythagorean triangle (3, 4, 5), we can get pairs ( 12

4 ,
32

4 ),
( 12

3 ,
42

3 ), (
2·12

3 , 2·22

3 ). We could also get D(0) and D(1) pairs like for example
(3, 42

3·32 ) . . . , but here we didn’t look such pairs.
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We have implemented the algorithm in C++. To remember pairs, we constructed
a graph where each edge is one pair. The graph can be represented using
standard containers (for example map<long, set<long> > g; so for a1 < a2,
a1 and a2 are connected if set g[a2] contains a1). We actually used container
unordered_map<long, vector<long> >, which is somewhat faster and takes
less memory.
So we just had to find the biggest clique in it. Because such a graph is very
sparse, it’s not hard to do it. On 6-core computer the first quintuple was shown
in about 10 seconds:

M =

{
2252

480480 ,
25482

480480 ,
2862

480480 ,
14082

480480 ,
8192

480480

}
which by clearing denominators gives Diophantine D(4804802)-quintuple with
square elements.
For example, there are 10 connected Pythagorean triangles: one with legs
480480 and 225 · 2548, one with the other leg 225 · 286 and so on.
Triangle with legs 225 · 286 and 480480 is obtained for (d , k, l) = (4290, 8, 7),
while the triangle with legs 480480 and 819 · 1408 is obtained for
(d , k, l) = (96096, 3, 2).
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We used the simplest algorithm for finding divisors; try to divide with prime
numbers p ≤ P. To check all prime divisors it would be hard because if for
example b = 2k · l , divisors of k + l could be big (and it is very small possibility
that this number is in other D-pairs).

We constructed divisors using factorization and all combinations of exponents,
so for known factorizations of x and y we can easy find all divisors of x · y ....
Later it turned out that this could work better in some situations if we were
using simpler methods.

Using sieve of Eratosthenes we generate all primes ≤ P. And then check only
those primes.

We checked two versions of pairs in algorithm. In one, each numerator is a
square, and in the other D > 1. The first one is much faster, and the second
finds more results.

We first checked only for P ≤ 106. Later we realized that this is too much.
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Experimental results from other tests suggested that big D-sets usually have only
small prime factors; for example, for our first quintuple, P = 11 is good enough.
For example, let us see for b ≤ N = 480480 and the first algorithm, on a 6-core
computer. For P = 103 . . . 109 there is no big difference in times, while the last
one used a little bit more of memory. So let us see differences between P = 11
and P = 103 (Bm represents number of found sets including maybe some the
same, and the last two columns (G4 and G5) are number of different sets):

P B2 B3 B4 B5 G4 G5 time
11 1957115 36897 1948 2 1471 1 13sec
103 3629788 51068 2256 5 1618 1 28sec,

while for P = 99, algorithm is only one second faster than P = 109 and only
number of B2 = 3629040 is somewhat smaller, and all other is the same.
In the second table we show for P = 11 how numbers are changing when we
double N, or double it once more:

N B2 B3 B4 B5 G4 G5 time
2× 3848686 65022 3279 3 2521 1 28sec
4× 7370326 112135 5418 5 4240 2 60sec.

The last number G5 = 2 means that we have found equivalent quintuple.
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Family of infinitely many D(0)-quintuples
We noticed that first few found nonequivalent quintuples have special structure.
A Diophantine quadruple {a, b, c , d} is called regular if

(a + b − c − d)2 = 4(ab + 1)(cd + 1).

Definition 3.1
We say that rational Diophantine quintuple {a, b, c , d , e} is exotic if abcd = 1,
quadruples {a, b, d , e} and {a, c , d , e} are regular, and if the product of any two
of its elements is a perfect square.

On that way we could create many quintuples using parametrizations on some
surfaces, and in the previously mentioned paper we proved that there are
infinitely many of them.

Using brute force, we also found two nonequivalent quintuples:

{ 7702

16336320 ,
12872

16336320 ,
17002

16336320 ,
61882

16336320 ,
197122

16336320},

{ 75682

524263740 ,
99472

524263740 ,
131042

524263740 ,
380252

524263740 ,
960192

524263740}.
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Open question – are there infinitely many regular
quintuples?
After about a week of brute-force searching (on 24-core computer), the fourth
found quintuple had not this structure:{

123842

1337776440 ,
181302

1337776440 ,
307452

1337776440 ,
1108802

1337776440 ,
2592592

1337776440

}
.

A Diophantine quintuple {a, b, c, d , e} is called regular if
(abcde + 2abc + a + b + c − d − e)2 = 4(ab + 1)(ac + 1)(bc + 1)(de + 1).

The last quintuple is regular quintuple. Later, using parametrizations on some
surfaces we were able to find many such quintuples, but we don’t know is there
infinitely many of them.

We have also found many examples of quintuples in which we have that product
of four elements is 1, but we have only one regular quadruple. For example:{

8608052

24264991119600 ,
24033922

24264991119600 ,
37752752

24264991119600 ,
753845402

24264991119600 ,
85697922

24264991119600

}
.
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Open question – is there Diophantine quintuple with
square elements?
While we have found infinitely many rational Diophantine quintuples with D(0)
property, it remains open if there is a rational Diophantine quintuple with square
elements.
On the other hand, there are infinitely many rational Diophantine quadruples
with square elements, for example the following two parametric family has this
property

a =
32(s − 1)2(s + 1)2v2

22(2s3 − 2s + v2)2 ,

b =
v2(−4s3 + 4s + v2)2

22(s + 1)2(s − 1)2(−s3 + s + v2)2 ,

c =
(2s3 − 2s + v2)2

32v2s2 ,

d =
42(−s3 + s + v2)2s2

v2(−4s3 + 4s + v2)2 .
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In all examples we had using brute-force search for Diophantine sets with square
elements, quadruples have an extra property that the product abcd = 1. This
would suggest that there is no quintuple with square elements.

But when we write similar program for such search, after few hours on 6-core
computer, we find some for which the product abcd ̸= 1 (and thousands for
which product is 1), for example:{(

18
77

)2
,

(
55
96

)2
,

(
56
15

)2
,

(
340
77

)2
}
.
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After we were able to concentrate on this case, we have found 90 examples of
distinct quadruples (’till 232). Or we can say 45, because here every reciprocal
set is also a D-set.

Using the fact that d = 1/abc is also quadruple, gives us almost quituples.

It is hard to believe that we will find a quintuple, but we have found a triple
which can be extended to a quadruple in three different ways:{

(325/1368)2, (192/235)2, (2107/1584)2}
(9006/4141)2,

(969/91)2,

(530442/136955)2.

For example, during that calculation ’till 232 (or square root ’till 216), we have
found 185.334.844.330 pairs, 39.523.768 triples, 2.602.822 quadruples and 0
quintuples. This calculation lasts about a day (maybe half time on 24-core
computer with 64GB of memory, and half time on 256-core computer using
about 1.2TB of memory).
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In the next table we can see number of D-sets with square elements which uses
certain number of bits:

bits pairs triples quadruples
∏

̸= 1
1 0 0 0 0
2 2 0 0 0
3 36 0 0 0
4 304 30 4 0
5 1.826 74 2 0
6 11.694 438 40 0
7 66.208 1.814 150 0
8 367.406 6.718 602 0
9 1.933.004 21.890 1.884 8

10 10.120.216 67.218 5.224 4
11 51.629.808 198.640 15.042 6
12 260.053.618 561.824 41.090 8
13 1.286.435.922 1.500.724 106.708 16
14 6.303.706.328 3.879.654 265.552 22
15 30.574.089.558 9.720.264 647.902 20
16 146.846.428.400 23.564.480 1.518.622 6
17 699.322.371.508 55.600.264 3.479.904 6 17/19





Thank you for your attention!
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